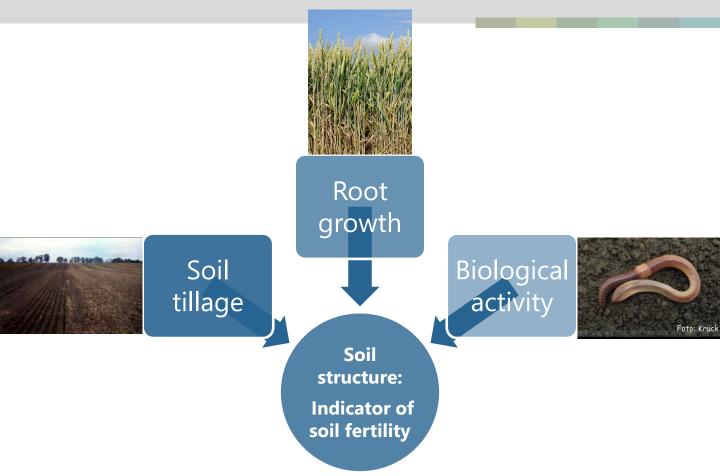
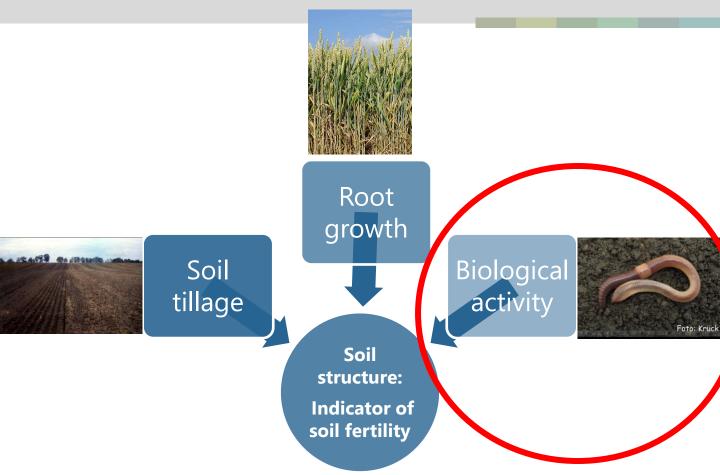


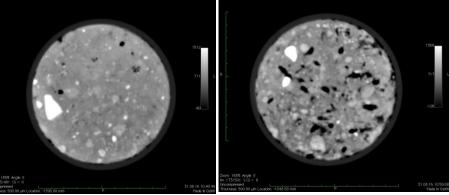
X-ray CT assessment of soil structure: a tool for monitoring soil biota driven ecosystem services in agricultural soils


Monika Joschko, Dietmar Barkusky, Ralf Wieland, Adrian Krolczyk, Matthias Willms, Wilfried Hierold (ZALF), Guido Fritsch, Thomas B. Hildebrandt (IZW), Lucian Elles (TU Berlin), Lei Li, Olaf Schmidt (UCD Dublin), Juliane Filser (Universität Bremen), Juan Jimenez (IPE-CSIC Jaca), Jack Faber (Alterra Wageningen), Jana Epperlein (GKB), Michael Schirrmann (ATB), Catherine A. Fox (AAFC), Marcel Budras, Felix Gerlach (Komturei Lietzen), Anita Beblek (agrathaer)

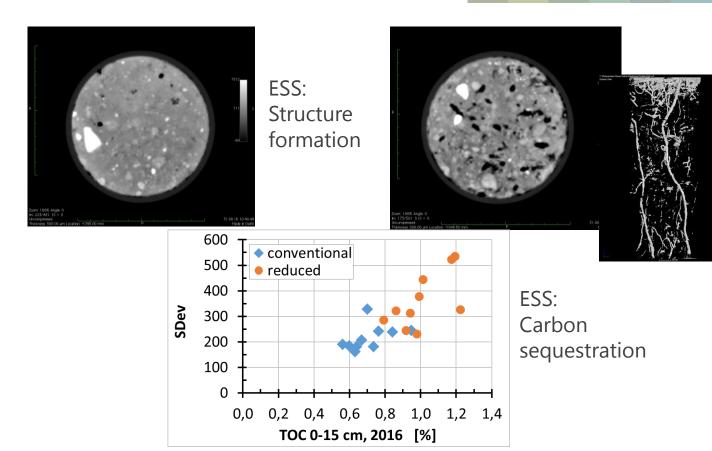

Rationale

Rationale

What is known ?



Sampling undisturbed soil cores


Soil structure (medical X-ray **computed tomography**, 12 cm diameter topsoil samples) (IZW Berlin) indicates earthworm abundance and activity

8 earthworms/ m² Conventional tillage 276 earthworms / m² Reduced tillage

CT assessed soil structure indicates soil biota induced ESS

How to incorporate this knowledge about biodiversity and ESS into the agricultural practice ?

Smart Simplification !

COST Action ES 1406 KEYSOM

36 top soil samples from 16 countries

grassland and forest

Smart simplification 1: Sampling and shipment of undisturbed soil samples

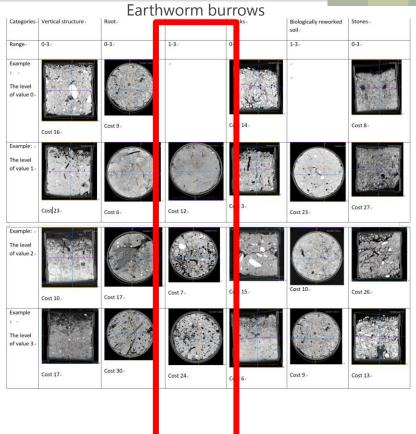
Medical X-ray computed tomography

resolution: 0.3 mm

IZW Berlin

Morphometrics of selected soil cores (Elles, TU Berlin)

	# Pores 2 mm	Vol mm3	Surf. mm2	Euler #	# Pores 5 mm	Vol mm3	Surf. mm2	Euler #	Med. CT
Cos 10 Cro		3924	7126	95	62	3780	6567	48.5	
Cos 15 UK	t 152	14137	22609	-32	94	13949	21860	-89.5	10
Cos 16 UK	t 412	6255	15407	367.5	302	6108	14714	258.5	
Cos 23 Ro	t 137	4937	9441	103.3	79	4759	8780	52.3	
Cos 24 Ro	t 178	8347	17512	133.3	102	8098	16550	61.8	



Smart simplification 2: Design of simple categories with 4 levels

Categories	Vertical structure -	Root	Earthworms burrows -	Cracks /	Biologically reworked soil-	Stones-
Range-	0-3-	0-3-	1-3-	0-3-	1-3-	0-3 -
Example : . The level of value 0 -	Cost 16-	Cost 9-	Υ.	Cost 14-	*	Cost 8-
Example: - The level of value 1 -	Cost 23	Cost 6-	Cost 12-	Cost 3-	Cost 23-	Cost 27-
Example: - The level of value 2 -	Cost 10-	Cost 17-	Cost 7-	Cost 15-	Cost 10.	Cost 25-
Example : The level of value 3	Cost 17-	Cost 30-	Cost 24-	Cost 6-	Cost 9-	Cost 13-

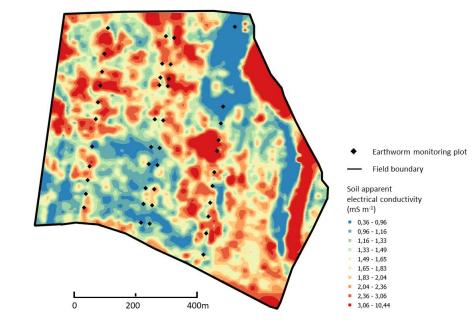
Smart simplification 2: Simple categories with 4 levels

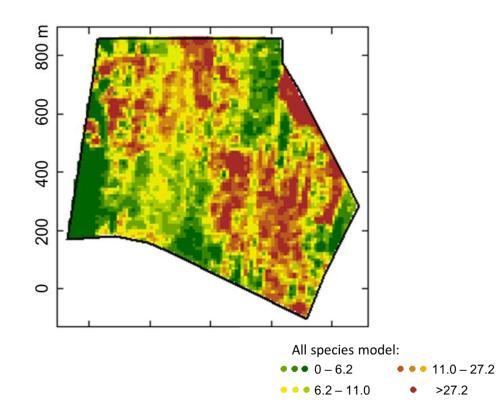
Simple categories suitable for distinction of system states! (based on COST ES1406)

How to incorporate this knowledge about biodiversity and ESS into the agricultural practice ?

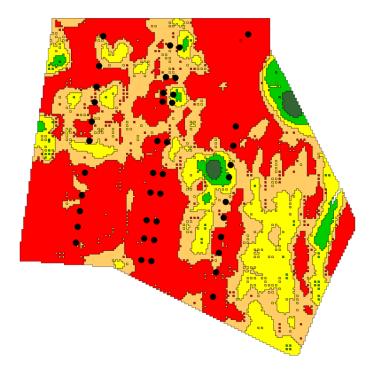
Proof of concept: Long-term tillage experiment Lietzen (since 1996)

Example: Long-term Field Experiment Lietzen



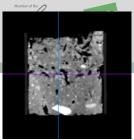

Abundances, assessed by hand sorting, strongly related to soil properties (fine particles) Proximal soil sensing for Eca, pH, Corg (ATB)

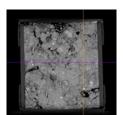
Soil map based on proximal soil sensing

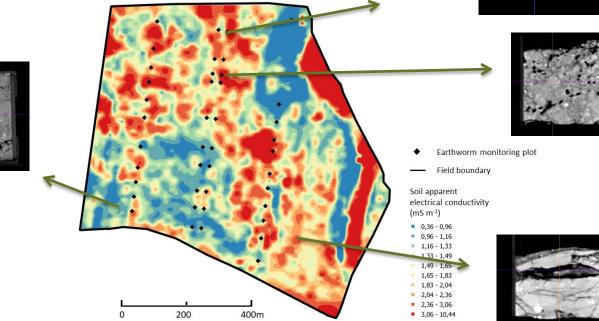

Earthworm distribution map based on long-term study of earthworm abundances at 42 plots and proximal soil sensing

Usage of earthworm abundances for the delineation of management zones !

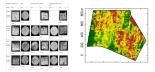
Application map for site-specific fertilization with organic manure


Applikationskarte (in t/ha)						
Mittel:	Kompost_Li_2_A4					
Wert	Fläche					
15 t/ha	0,4800 ha					
20 t/ha	1,8425 ha					
25 t/ha	10,3350 ha					
30 t/ha	18,8825 ha					
35 t/ha	31,5175 ha					
Gesamtfläche: 63,0575 ha						
Gesamtmenge: 1.972,01 t						
Durchschnitt: 31,27 t/ha						

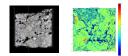

Applikationskarte

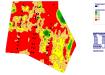

Budras, Komturei Lietzen

Next step 2020: CT assessed soil structure for the delineation of management zones!



Application maps based on soil maps, CT scans, smart analysis and AI-based decision trees





- Step 1: Soils maps of the desired area
- Step 2: Smart sampling of soil samples
- Step 3: X-ray CT scanning and analysis of soil fertility status

 Step 4: Derivation of local application maps based on AI decision algorithms

 Step 5: Usage of application maps in agricultural technology

Thank you!

Willkommen!

axisversuch Lietzey

Weg in die Zukunie

1. 1.

